
0-click RCE on Tesla Model 3 through TPMS Sensors
Hexacon 2024

October 4th 2024

Who are we

David Berard
@_p0ly_

Thomas Imbert
@masthoon

Vincent Dehors
@vdehors

Synack�v

Offensive security

170 Experts

Pentest, Reverse Engineering,
Development, Incident Response

Reverse Engineering team

50 reversers

Low level research, reverse engineering,
vulnerability research, exploit development,
etc.

■

■

■

■

■

2

Synacktiv vs Tesla: Previous work

Pwn2Own
Vancouver 2022

Pwn2Own
Vancouver 2023

Pwn2Own
Tokyo 2024

Pwn2Own
Vancouver 2024

WiFi exploit pre-
auth Zero click +

network
sandbox escape

Bluetooth RCE +
Kernel LPE +

Security
Gateway RCE

Cellular Network
RCE +

Infotainment
RCE + network
sandbox escape

Tesla's VCSEC
RCE through

TPMS

3

Architecture

4

Architecture
VCSEC ECU

Features

Endpoint for the Tesla Mobile App
Open the car, start driving, basic

remote control

NFC
Open the car, start driving

TPMS
Measure �res pressure and

temperature

Connectivity

Bluetooth Low Energy
Tesla App + TPMS sensors

Ultra Wide Band
Tesla App

Vehicule CAN
UDS for maintenance /

provisionning

Standard CAN signals

■

■

■

■

■

■

■

■

■

■

■

■

■

5

Architecture
VCSEC ECU

Hardware

Now embedded in VCLe� ECU, used to be
a standalone ECU

S�ll a dedicated SoC on this ECU

PowerPC SoC: SPC56 from ST
run in VLE mode

No BLE connec�vity on the PCB
Mul�ple BLE Endpoints connected with

UART to CAN transceivers

■

■

■

■

■

■

6

Architecture
VCSEC ECU

Firmwares
VCSEC is updated by the Security Gateway that fetches firmware from the infotainment

Present in the roo�s filesystem of the infotainment for many board revisions

Firmwares are not encrypted

Software

Opera�ng system: FreeRTOS

Look to be Tesla code

Standard librairies used: Mbed-TLS,
nanopb

Reverse engineering

PPC VLE is well supported by IDA Pro, a
decompiler is available

PPC VLE emulators are not widespread,
qemu does not support it

SPC56 SDK gives many useful informa�on
Used version of FreeRTOS

Low level drivers, etc...

■

■

■

■

■

■

■

■

■

■

■ 7

Architecture
VCSEC ECU

Protocol

BLE and UWB interfaces use Protobuf
messages

The .proto is shared between differents
features (TPMS & Tesla Applica�on for
example)

The size of the protobuf message is just
prepended to the message

Some projects on Github already extracted
the .proto from the Tesla App

■

■

■

■

8

TPMS

9

TPMS Sensor
Tire-Pressure Monitoring System

Report real-�me �re-pressure informa�on

Mandatory in new vehicles

One for each wheel FL/FR/RL/RR

■

■

■

10

TPMS Sensor
Monitor and Alert

Warn the user on any �re abnormali�es

Older TPMS used 433 MHz Radio for connec�vity

Now, TPMS leverages Bluetooth Low Energy

5 BLE endpoints in Tesla cars
Center/Left/Right/Rear/Rear Left

Used to locate TPMS posi�on

■

■

■

■

■

11

TPMS Sensor
Connectivity

Only BLE implementa�on studied

Messages exchanged over BLE GATT characteris�cs
00000211-b2d1-43f0-9b88-960cebf8b91e GATT service

But VCSEC does not use UUIDs but only BLE handles �

Data serialized with Protocol Buffer

■

■

■

■

■

12

TPMS Sensor
Protocol

13

TPMS Sensor
Example of standard messages

Received from TPMS

// Received:
TPData {
 pressure: 101
 temperature: 22
}

// Received:
TPWheelUnitInfo {
 TIAppCRC: "[..]"
 MLXAppCRC: "[..]"
 batteryVoltage_mV: 3011
}

■

14

VCSEC Vulnerability and Exploitation

15

VCSEC
How to start reverse engineering

The Plan
Study why they are mul�ple firmwares of VCSEC

Choose the firmware that matches the test setup and is valid for Pwn2Own

Reverse engineering

Reality
Picked firmware with the largest number

Found vulnerability
Not present on other firmwares

Understood the number , which is the hardware revision

Asked the vendor (thanks Tesla!) for the right hardware and if it was valid for Pwn2Own

Used half of research �me to have a working setup

■

■

■

■

■

■

■

■

■

16

VCSEC
Model3 versions

Firmwares on the infotainment filesystem
$ cat signed_metadata_map.tsv |grep vcsec
vcsec:50397185 vcsec/7/UDSBoot-VCSEC-P_3-A_0-U_0-CONFIG_1704-GIT_AE006F26D00A5C6D.bhx
vcsec:117440513 vcsec/23/UDSBoot-VCSEC-P_7-CONFIG_700-GIT_8D34551F13E4371E.bhx
vcsec:134217729 vcsec/24/UDSBoot-VCSEC-P_8-CONFIG_702-GIT_3ACAF2AD323CEBCC.bhx
vcsec:50397185 vcsec/7/UDSBoot-VCSEC-P_3-A_0-U_0-CONFIG_1705-GIT_AE006F26D00A5C6D.bhx
vcsec:117440513 vcsec/23/UDSBoot-VCSEC-P_7-CONFIG_701-GIT_8D34551F13E4371E.bhx
vcsec:134217729 vcsec/24/UDSBoot-VCSEC-P_8-CONFIG_703-GIT_3ACAF2AD323CEBCC.bhx
vcsec:50397185 vcsec/7/VCSEC_ConfigID_7_crc_formatted_lithium-signed.bhx
vcsec:117440513 vcsec/23/VCSEC_ConfigID_23_crc_formatted_lithium-signed.bhx
vcsec:134217729 vcsec/24/VCSEC_ConfigID_24_crc_formatted_lithium-signed.bhx

Version analyzed: hw-id 134217729
Seems to be used in recent Model 3 version ("highland" since October 2023)

VCSEC_ConfigID_24 is the main applica�on code

VCSEC_ConfigID_23 (HW_ID 117440513) has a very similar code (don't know where is it used)

■

■

■

17

VCSEC
Reversing

IDA decompiler for PPC VLE

Time consuming to reverse
~1MB (3k func�ons)

No symbols

Large structures and func�on callbacks used
everywhere

Not many strings

 Main task

■

■

■

■

■

■

18

VCSEC
Reversing Protobuf messages

Used anvilsecure/nanopb-decompiler to retrieve Protobuf
Patched for BE support (version 3 with 16-bit fields)

// ToVCSECMessage
message Message_10403C1 {
 required Message_10416BD field_1 = 1; // SignedMessage
 required Message_10407AE field_2 = 2; // UnsignedMessage
}
// SignedMessage
message Message_10416BD {
 required bytes field_1 = 1 [(nanopb).max_size = 20];
 required bytes field_2 = 2 [(nanopb).max_size = 282];
// ...

■

■

19

VCSEC Vulnerability
x509 Certiûcate in parts

During enrollment, VCSEC can ask
for the TPMS cer�ficate

Only for type 5 TPMS

TPMS of this type are not in
produc�on yet |

■

■

■

20

VCSEC Vulnerability
Protobuf certiûcate in parts

Cer�ficate x509 sent in parts

Part encoded with Protocol Buffer CertificateResponse

message CertificateInParts {
 uint32 startIndex = 1;
 uint32 certificateSize = 2;
 bytes data_ = 3; // nanopb.max_size:128
}

■

■

21

VCSEC Vulnerability
Integer overüow in certiûcate reassembly

Integer overflow in the valida�on of startIndex

Results in Out-Of-Bounds write with a nega�ve startIndex

char g_cert_buffer[512];

void handle_certificate_response(
 u32_t tpms_id,
 u8_t *data, // certificateInParts.data_.bytes
 u32_t data_size, // certificateInParts.data_.size
 u32_t start_index, // certificateInParts.startIndex
 u32_t certificate_size) // certificateInParts.certificateSize
{
 // Integer overflow ex: (start_index:-8 + data_size:64) = 56
 if (data_size <= 512 && (u32_t)(start_index + data_size) <= 512)
 {
 // startIndex can be negative -> OOB write before the global
 memcpy(g_cert_buffer+start_index, data, data_size);

■

■

22

VCSEC Vulnerability
Exploitation primitive

Maximum data_ buffer size is 128 (enforced by nanopb)

Could overwrite up to 128 bytes of global data before g_cert_buffer

Pointer to a structure containing a func�on pointer just before the buffer

struct tpms_auth_s {
 bool (*validate_subject_name)(/*...*/);
 // ...
};

struct tpms_auth_s * g_tpms_auth;
u8 tpms_auth_id;
u8 tpms_auth_state;
char g_cert_buffer[512];

Sending a valid x509 cer�ficate triggers the validate_subject_name call

■

■

■

■

23

VCSEC Exploitation
Mitigation

No CFI

No ASLR

MMU/MPU not configured
Everything RWX

■

■

■

■

24

VCSEC Exploitation
Exploitation

Overwrite structure pointer to point to the controlled buffer

Func�on pointer points to the controlled buffer

During cer�ficate parsing, it jumps to shellcode (PPC VLE)

Shellcode can be built from C code using a powerpc-eabivle toolchain
C code can directly call firmware func�ons (used in post-exploit)

■

■

■

■

■

25

TPMS auto learn

26

VCSEC Exploitation
1-click to 0-click

1-click to 0-click
The vulnerability requires VCSEC to adopt a new TPMS sensor

UDS was used to configure VCSEC to add/remove TPMS sensors
This is not valid for pwn2own

Need another way to adopt TPMS

Look at the auto learn mechanism

■

■

■

■

■

27

TPMS
Auto learn

Why VCSEC needs a TPMS auto learn feature
User can have two set of wheels

Users are encouraged to switch front and back wheels
to level �re wear

Auto learn is started if
Car is moving for more than 90s

Speed is at least 25 km/h

VCSEC will compute TPMS posi�on based on its BLE
endpoints measurements

Adop�on of new TPMS
If a TPMS is disconnected during the auto learn phase
VCSEC try to adopt new ones based on BLE adver�sements

■

■

■

■

■

28

TPMS
Force the adoption of new TPMS

TPMS BLE connec�on mechanism
1. TPMS sensor wakes up by the movement of the wheels.

2. TPMS sends BLE adver�sements.

3. VCSEC receives BLE adver�sement.

4. VCSEC connects to TPMS if the MAC address matches its list of enrolled sensors.

5. BLE connec�on is established, TPMS stop adver�sing.

Act as a TPMS sensors
There is no security except the MAC address list.

If an a�acker sends adver�sement with the correct MAC address VCSEC will connect on the fake sensor and
accept messages (like fake �re pressure or temperature)

In that case VCSEC will not do the TPMS adop�on phase (where our vulnerability lives)

■

■

■

29

TPMS
Force the adoption of new TPMS

How to DoS a TPMS sensor
Just connect on it before VCSEC does when the sensor wake up

Probably many other ways: JAM signal etc...

During auto learn phase, having a disconnected sensor allows to enroll arbitrary new sensors

Two ESP32 to the rescue
First try with BlueZ (one of the major bluetooth stack on Linux) but was too slow, VCSEC connects before us

Automa�c connec�on on adver�sed TPMS was implemented on ESP32: good success rate in racing VCSEC

TPMS simulator implemented on another ESP32, VCSEC enrolls it during the auto learn phase

TPMS adop�on messages are sent to the TPMS simulator, vulnerability can be exploited

■

■

■

■

■

■

■

30

31

32

33

34

35

36

37

38

39

Conclusion

40

Conclusion
Final payload

Shellcode: send SYNACKTI V<3TESLA on the vehicule CAN on CAN ID 0x444 :

Locate and use the fonc�on in the firmware to send CAN messages

Used as proof of exploita�on for Pwn2Own: Abritrary CAN message on vehicule CAN from a
remote connec�on

#define fnsend_can_raw ((void (*)(char *msg, int id))0x10B7D60)

int main_payload()
{
 while(1) {
 fnsend_can_raw("\x44\x44\x08SYNACKTI", 60);
 fnsend_can_raw("\x44\x44\x08V<3TESLA", 60);
 }
 return 0;
}

■

■

■

41

VCSEC Exploitation
Result

First try at Pwn2Own Vancouver 2024 (March)

Win: 200 000$ plus a Tesla Model 3 (2024)

A lot more easier than our three other Tesla
Pwn2own entries (2022, 2023, january 2024)

Infotainment a�acks are difficult because of good
defense in depth
User isola�on, sandboxing, ASLR, PIE, ...

Try your luck, standalone ECUs are a good
candidate to start

■

■

■

■

■

42

Conclusion

Impacts
VCSEC is a cri�cal ECU for the car security

It manages access to the car and grants the user the right to start the car

It has access to the vehicule CAN and can send messages to do some ac�on on the car

Having code execu�on in this ECU gives an a�acker the ability to perform these ac�ons

A�ack can be implemented on very small devices

Fixes
Tesla quickly released a new version that fixes the bug

Vulnerability is fixed and other variables are also checked

■

■

■

■

■

■

■

43

https://www.linkedin.com/company/synacktiv

https://twitter.com/synacktiv

https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
https://synacktiv.com/

