
1

Finding and exploiting an old XNU logic bug
Hexacon 2023

2

2

 Eloi Benoist-Vanderbeken
 @elvanderb
 Reverse Engineering team tech lead
 iOS / macOS

 Past presentations
 An Apple a day keeps the exploiter

away (SSTIC 2022)
 macOS: how to gain root with CVE-

2018-4193 in < 10s (OffensiveCon
2019)

 Heapple Pie: macOS and iOS default
heap (Sthack 2018)

Whoami
 Synacktiv

 Hexacon organisers!
 Offensive security
 140 experts
 Pentest, Reverse Engineering,

Development, Incident Response

 Reverse Engineering team
 47 reversers
 Low level researches, reverse

engineering, vulnerability research,
exploit development, etc.

3

3

Pwn2own 2023
 New target !

 LPE on a MacBook Pro
 MUST use a kernel bug

 With an M-series SOC
 PAC!

 $40,000
 Not much but better than nothing :)

 Time to find some bugs…

4

4

Which bugs?
 No more cheap bugs!

 No iOS bug
 No PAC bypass
 No ninja exploit techniques

 Actually not that easy…
 No memory corruption

 Or very specific ones
 Not a lot of surface

 Other constraints…
 Want to work on my M1

MacBook Air
 No company tools 😢

 IDA > Ghidra…
 No KEXTs

5

5

Which bugs?
 No more cheap bugs!

 No iOS bug
 No PAC bypass
 No ninja exploit techniques

 Actually not that easy…
 No memory corruption

 Or very specific ones
 Not a lot of surface

 Other constraints…
 Only during my free time
 Don’t have company tools

 IDA > Ghidra…
 No KEXTs

6

6

File system
 Large non iOS attack surface

 Can mount / unmount
things on macOS

 SUID binaries
 Almost no sandbox

 Source of logic bugs/exploits
 SUID binaries
 Turns UAF into arb. file write
 etc.

 Lots of code in XNU
 No need to get our hand

dirty with Ghidra

7

7

vnodes
 Each file/directory has a

vnode
 Path ↔ vnode is cached

 Lazily freed
 Not that easy to exploit UAF
 Needs to be careful

 vnode_getwith{ref/vid}
 Unix permissions are cached

 Saves CPU

 Lots of corner cases
 But public API
 See vnode.h

 Found some bugs…
 Not that easy to exploit :’(

8

8

vnodes
 Each file/directory has a

vnode
 Path ↔ vnode is cached

 Lazily freed
 Not that easy to exploit UAF
 Needs to be careful

 vnode_getwith{ref/vid}
 Unix permissions are cached

 Saves CPU

 Lots of corner cases
 But public API
 See vnode.h

 Found some bugs…
 Not that easy to exploit :’(

9

9

10 days before the dead line…

10

10

2 days after saying that I gave up…

11

11

12

12

Let’s have a look to /dev/fd

13

13

man fd

14

14

Ugly hack
 Saw the code during my review
 Ugly hack in open

 /dev/fd open func returns ENODEV…
 And set bsdthread_info→uu_dupfd = vnode→fd_fd

 … which is handled by the open syscall…
 … by calling dupfdopen(bsdthread_info→uu_dupfd)

 Fun but not interesting…
 Almost exact same thing than dup...
 Used to use the same /dev/fd vnodes for every process

15

15

Sometimes all you need is vnode
 This ugly hack doesn’t always work

 Other syscalls manipulate paths
 What happens when you call chmod(“/dev/fd/3”, 777)?

1. get “/dev/fd/3” vnode
 /dev/fd special vnode
 Mostly only hold the fd number

2. check if the chmod operation is authorized
 Call the MAC hooks
 Call vnode_getattr to get the vnode mode bits / owner etc.

3. change the mode bits
 Call vnode_setattr on the vnode

16

16

Got it?
 vnode_getattr / vnode_setattr

 Call the /dev/fd functions fdesc_getattr / fdesc_setattr
 Lookup the fd in the current context with fp_lookup
 Call vnode_getattr / vnode_setattr on the underlying vnode

 Obvious TOCTOU
 You can change the fd between the calls

 Just close the fd and reopen anything
 Can be used to chmod all the files we can get a fd on

 Trivial to get root (just modify a root file and make it suid)
 Less than 1 day to find an exploit the vulnerability

17

17

Got it?
 vnode_getattr / vnode_setattr

 Call the /dev/fd functions fdesc_getattr / fdesc_setattr
 Lookup the fd in the current context with fp_lookup
 Call vnode_getattr / vnode_setattr on the underlying vnode

 Obvious TOCTOU
 You can change the fd between the calls

 Just close the fd and reopen anything
 Can be used to chmod all the files we can get a fd on

 Trivial to get root (just modify a root file and make it suid)
 Less than 1 day to find and exploit the vulnerability

18

18

Making animated ASCII arts is hard

19

19

Can we do more?
 root is great but SIP/TCC is still there

 Cannot read users documents
 Cannot load kexts
 Cannot modify all the files

 Can we bypass SIP with the same bug?

20

20

Can we do more?
 root is great but SIP/TCC is still there

 Cannot read users documents
 Cannot load arbitrary kexts
 Cannot modify all the files

 Can we bypass SIP with the same bug?

21

21

SIP
 Protects system files against arbitrary modifications

 Among other things
 Used to enforce other security mechanisms

 Notably the kext related files
 restrictions / MDM configuration / user consent / etc.

 Protected with the “restricted” flag

% ls -aOl /var/db/SystemPolicyConfiguration/KextPolicy
-rw------- 1 root wheel restricted 4096 Nov 15 2022 KextPolicy

22

22

Ooops
 Remember few slides back…

 MAC hooks are called with the /dev/fd vnode
 The sandbox only sees this vnode

 The vulnerability
 SIP has no way to know what’s the “real” underlying vnode
 It could call vnode_getattr to check the restricted flag

 But it would still be exploitable with a race
 But it actually don’t even bother!

 Path based rule?

23

23

31337 exploit
 Open a file read only
 Change the flags on the /dev/fd/XXX alias
 …
 Profit

24

24

31337 exploit
 Open a file read only
 Change the flags on the /dev/fd/XXX alias
 …
 Profit

function exploit() {
 integer i
 {
 exec {i}<"$1"
 chflags norestricted "/dev/fd/$i"
 } always { exec {i}>&- }
}

25

25

But how to get kernel code exec?
 Easy to bypass user consent

 Just edit the KextPolicy database
 Easy to bypass deprecated function detection

 Just rm KextClassification.plist
 Not that easy to load unsigned kexts

 It may be possible, I didn’t spent too much time on it
 Ping me if you know how to do it :)

 Sufficient to load a correctly signed kext
 Don’t forget to kill syspolicyd

26

26

How has it been fixed?
 Apple just added some checks in the /dev/fd code

 Get the underlying vnode
 Re-do the checks done in chmod/chflags

 Fixed in macOS 12.6.6 and iOS 16.5
 CVE-2023-32413
 iOS shouldn’t be impacted

 /dev/fd is not even compiled in the release kernels…
 … but it was in the accidentally released 15.x dev kernels

 Please Apple, release more of them

27

27

Conclusion
 No /dev/fd on iOS

 Even if…
 Sandbox, no SUID, mandatory code signature, no interpreter, etc…

 Still a lot easier to get root on macOS
 Even with PAC

 Logic bugs won’t save us all
 But “classic” memory corruptions neither
 Probably why we see so much reports in virtual memory

 But for how long…

28

www.linkedin.com/company/synacktiv

www.twitter.com/synacktiv

www.synacktiv.com

https://www.linkedin.com/company/synacktiv
https://www.twitter.com/synacktiv
https://www.synacktiv.com/

